Коэффициент детерминации (D)

Парный линейный коэффициент корреляции Бравэ-Пирсона (r).

Парный линейный коэффициент корреляции Бравэ-Пирсона вычисляется в том случае, когда между показателями исследуемых выборок (Хi и Уi) существует линейная связь.

Если Х и У независимые случайные величины, то коэффициент корреляции равен 0. Заметим, что обратное утверждение неверно. Если r = 0, то между изучаемыми признаками нет линейной корреляционной зависимости, но это условие не исключает существования какого-либо другого вида корреляционной зависимости (параболической, показательной и др.)

Одна из формул для расчета коэффициента корреляции Бравэ-Пирсона:

где Xi, Yi - показатели первой и второй выборок соответственно;

- средние арифметические значения первой и второй выборок соответственно;

- стандартные отклонения первой и второй выборок соответственно;

n - объем каждой выборки.

Абсолютная величина коэффициента корреляции не превосходит единицы: < 1.

Коэффициент корреляции характеризует степень зависимости, или тесноту (силу) зависимости между Х и У, чем больше , т. е. чем ближе он к 1, тем сильнее (теснее) связь между изучаемыми признаками, а чем ближе он к 0, тем слабее.

Принято считать, если:

· коэффициент корреляции равен 1, то между исследуемыми признаками наблюдается функциональная связь;

· изменяется от ±0,9 до ± 0,7 - сильная статистическая связь;

· изменяется от ±0,69 до ±0,5 - средняя статистическая связь;

· изменяется от ± 0,49 до ±0,2 - слабая статистическая связь;

· коэффициент корреляции равен нулю - то между изучаемыми признаками нет линейной корреляционной зависимости.

Таким образом, коэффициент корреляции Бравэ-Пирсона r используется только при наличии линейной взаимосвязи между исследуемыми признаками. Существует несколько видов коэффициентов корреляции: парный линейный коэффициент корреляции Бравэ - Пирсона r, ранговый коэффициент корреляции Спирмэна r, тетрахорический коэффициент сопряженности Т, коэффициент множественной корреляции rxyz, коэффициент частной корреляции rxyz.

После вычисления любого из перечисленных выше коэффициентов корреляции, необходимо рассчитать его достоверность с использованием критерия Стьюдента.

В некоторых случаях тесноту связи случайных величин характеризуют коэффициентом детерминации D, равным:

.

Коэффициент детерминации показывает, какой процент взаимосвязи результатов двух выборок объясняется их взаимовлиянием.

Остальная часть (100 - D)% объясняется влиянием других неучтённых факторов.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

− 4 = 3